“Gravity Powered” Lights (and How to Make Them More Powerful)

gravity powered lights

The GravityLight uses a sack of sand or stones to gradually pull a piece of rope through a dynamo mechanism which generates electricity to power an LED. It is a cheaper and more sustainable option than a solar powered light, which requires not only a solar panel but also a battery. The product is aimed at the developing world and its makers raised 400,000 dollars at indiegogo.

The technology could be further improved by including pulley mechanisms that were used to operate human powered cranes and lifting devices in pre-industrial times. This would allow a person to lift heavier weights and thus power more powerful lights.

To be precise, the light is not powered by gravity. It is muscle-powered, while gravity stores the energy and fulfills the role of a battery. Hat tip to Bernd Vleugels.

Home Energy Storage

“Energy storage becomes more important as we transition away from fossil fuels—already its own energy storage medium—to more intermittent sources. But besides batteries—which offer a limited number of cycles and for some types require monthly maintenance—what other non-fossil in-home energy storage alternatives might we consider, and how much energy might we expect to store in each case? We will look at gravitational storage, flywheels, compressed air, and hydrogen fuel cells as possible options. Some might even cost less than $100,000 to implement in your home.” Read more.

A Nation-Sized Battery

“Putting the pieces together, our national battery occupies a volume of 4.4 billion cubic meters, equivalent to a cube 1.6 km (one mile) on a side. The size in itself is not a problem: we’d naturally break up the battery and distribute it around the country. This battery would demand 5 trillion kg (5 billion tons) of lead. A USGS report from 2011 reports 80 million tons (Mt) of lead in known reserves worldwide, with 7 Mt in the U.S. A note in the report indicates that the recent demonstration of lead associated with zinc, silver, and copper deposits places the estimated (undiscovered) lead resources of the world at 1.5 billion tons. That’s still not enough to build the battery for the U.S. alone. But even then, we aren’t done: batteries are good for only so many cycles (roughly 1000, depending on depth of discharge), so the national battery would require a rotating service schedule to recycle each part once every 5 years or so. This servicing would be a massive, expensive, and never-ending undertaking.” Read more: A Nation-Size Battery.